LOCATION FOR (NG)911

Henning Schulzrinne May 2013

Location is crucial

find correct PSAP

city-level

dispatch first responders

meters

FCC location accuracy requirements (47 CFR 20.18)

- Phase I (1998): cell tower + sector only → 1-20 miles
- Phase II (2002): network and/or handset location determination
- Phase II+ (2013): provide confidence and uncertainty
 - "this measurement is within 20 m with 90% certainty"
- Testing only outdoors
 - "drive testing"
 - various exclusions for heavy forestation (< 15% counties)

	67%	90%
Network-based	100 m	300 m
Handset-based	50 m	150 m (80% by 2013, 90% by 2019)

Location types

	Civic	Geo
Example	445 12th Street SW Washington, DC 20554	38.884560 (N), -77.028124 (W)
Nomadic	✓	
Mobile	×	
z-axis	room, floor	GPS ~ ± 20m (= multiple floors)
Suitable for dispatch?		after translation
Validation	redundancy plausibility	sometimes

Location requirements

- Accuracy
 - horizontal: identify building or see scene of incident
 - vertical: floor level
- Secure
 - prevent spoofing
- Quick time to fix
 - 10-30s: accurate enough to reach right PSAP
 - 3 min: accurate enough to dispatch first responder

- Cheap
 - per-device cost of < \$5?
 - help if it can be re-used for commercial LBS
- Works everywhere
 - indoor (steel beam commercial and stick-built residential) & outdoor
 - urban & rural
 - forested & urban canyons
 - with uninitialized devices

Indoor location

- ~70% of 911 calls are from mobile phones
- ~35% of households are mobile-only
- Indoor location challenging:
 - Need higher accuracy
 - identify building → floor ("z-axis") → apartment
 - medical & law enforcement (abuse, home invasion) emergencies not obvious
 - Existing technologies limited
 - GPS does not work (except maybe in wood frame buildings)
 - others require new infrastructure or sensors
 - Testing challenging
 - Can't do drive test

Indoor location

- Broad classes & morphologies
 - dense urban, urban, suburban, rural
 - single/two family residential → GPS may work
 - public and semi-public buildings: arenas, airports & malls
 - office buildings → professionally managed
 - MDUs (3+ floors)
 - special cases (parking garages, deep basements, houses of worship, ...)
 - see ATIS-0500013 & ATIS-0500011
- CSRIC test (late 2012)
 - 19 buildings, 75 test points
 - 3 location technologies:
 - NextNav: beacons
 - Polaris: RF pattern matching
 - Qualcomm: AGPS & AFLT

CSRIC test: yield

Number				
Building ID	Total Number of Test Calls Attempted	Total Number of Test Calls with Position Fix Received	Percentage of Test Calls with Fix Received (Yield)	
NextNav_All Dense Urban Buildings	5174	4859	93.9%	
NextNav_All Urban Buildings	4444	4238	95.4%	
NextNav_All Suburban Buildings	3581	3581	100.0%	
NextNav_All Rural Buildings	843	820	97.3%	
Polaris_All Dense Urban Buildings	5406	5372	99.4%	
Polaris_All Urban Buildings	3877	3874	99.9%	
Polaris_All Suburban Buildings	3497	3489	99.8%	
Polaris_All Rural Buildings	749	726	96.9%	
QualComm_All Dense Urban Bldgs	5994	5145	85.8%	
QualComm_All Urban Buildings	4776	4338	90.8%	
QualComm_All Suburban Buildings	4067	3716	91.4%	
QualComm_All Rural Buildings	714	709	99.3%	

CSRIC test: accuracy

Horizontal Error Statistics (m)								
Building ID	Total Number of Calls	67 th Percentile	90 th Percentile	95 th Percentile	Average Error	Standard Deviation	Max Error	Min Error
NextNav_All Dense Urban Buildings	4859	57.1	102.4	154.0	57.5	64.9	1059.2	0.6
NextNav_All Urban Buildings	4238	62.8	141.1	196.1	69.5	99.9	4367.2	2.1
NextNav_All Suburban Buildings	3581	28.6	52.9	62.2	27.2	99.7	5854.2	0.4
NextNav_All Rural Buildings	820	28.4	44.9	60.3	70.3	1231.5	35255.9	1.5
Polaris_All Dense Urban Buildings	5372	116.7	400.1	569.3	150.3	193.3	1656.1	2.2
Polaris_All Urban Buildings	3874	198.4	447.8	729.9	203.0	225.9	3131.9	0.4
Polaris_All Suburban Buildings	3489	232.1	420.7	571.4	215.1	161.9	1089.1	8.4
Polaris_All Rural Buildings	726	575.7	3005.1	3072.3	845.6	961.3	5809.2	66.2
Qualcomm_All Dense Urban Bldgs	5145	155.8	267.5	328.1	136.4	94.7	722.5	0.5
Qualcomm_All Urban Buildings	4338	226.8	449.3	507.1	233.9	547.7	18236.7	1.6
Qualcomm_All Suburban Buildings	3716	75.1	204.8	295.7	92.0	173.6	4639.4	0.2
Qualcomm_All Rural Buildings	709	48.5	210.1	312.3	639.9	2999.2	27782.4	1.0

Other location technologies

- WiFi-based (e.g., Skyhook, Google, Apple)
 - only in dense urban and sub-urban environments
 - can be 3-5m accurate with measurements
- IP (network) address
 - only accurate (at best) to DSLAM or headend
- Other technologies: DTV, FM, terrestrial beacons
 - require infrastructure or handset modification
 - may not resolve altitude

Location determination and delivery

- Devices can connect to many different networks
 - Devices need to support multiple modes
 - Networks need to support at least one
- There is no magic bullet that is
 - universally available
 - accurate (building or room level)
 - does not require carrier cooperation
- W3C location API in every recent web browser

Next steps

- both short & long term goals → foster technology evolution and allow network planning
- Four main issues:
 - "coarse" indoor location (identify building)
 - "fine-grained" indoor location (identify apartment)
 - may have lower yield and be less secure
 - floor level ("z-axis")
 - likely separate technology (e.g., barometric pressure, stairs/elevator)
 - testing
 - by technology
 - actual measurement experience

Conclusion

- Accurate indoor location critical as mobile phones replace landlines
 - may be particularly relevant to people with communication-related disabilities
- Short term & long term focus
 - establish goals & expectations soon
 - allow for technology development & infrastructure deployment
 - e.g., barometric pressure sensors, beacons, smoke detectors with